FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- x
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Lagrangiana[editar | editar código-fonte]
A dinâmica dos quarks e glúons é controlada pela lagrangiana da cromodinâmica quântica. A lagrangiana invariante de gauge da QCD é
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- x
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde são os campos dos quarkos, uma função dinâmica do espaço tempo, na representação fundamental dogrupo de gauge SU(3), indexada por ; são os campos de glúons, também funções dinâmicas do espaço-tempo, na representação adjunta do grupo de gauge SU(3), indexado por a, b,... ; γμ são as matrizes de Dirac conectando a representação spinorial a representação vetorial do grupo de Lorentz.
O símbolo representa o tensor de força do campo de glúon invariante de gauge, análogo ao tensor de força do campo eletromagnético, F^{\mu \nu} \,, em eletrodinâmica quântica. É dado por:[8]
onde fabc são as constantes de estrutura de SU(3). Note que as regras para mover os índices a, b, or c de cima para baixo são triviais (assinatura (+, ..., +)) de forma que fabc = fabc = fabc ao passo que para os índices μ or ν devem ser seguidas as regras não triviais, correspondendo a assinatura métrica (+ − − −), por exemplo.
As constantes m e g controlam a massa dos quarks e as constantes de acoplamento da teoria, sujeitas a renormalização da teoria quântica completa.
Uma noção teórica importante envolvendo o termo final da lagrangiana acima é a variável do loop de Wilson. Esse loop tem papel importante nas formas discretizadas da QCD (veja QCD na rede), e de forma mais geral, distingue entre estados confinados e livres da teoria de gauge. Foi introduzido pelo físico laureado com Nobel Kenneth G. Wilson.
Campos
Um férmion (português brasileiro) ou fermião (português europeu) é uma partícula que tem spin semi-inteiro (em unidades de ) e obedece à estatística de Fermi-Dirac.[1] Recebem este nome em homenagem ao físico Enrico Fermi. Todas as partículas elementares ou são férmions ou bósons.
Em decorrência do princípio de exclusão de Pauli, dois férmions de spin 1/2 quaisquer não podem ter simultaneamente todos os números quânticos idênticos, aí incluídos os valores das projeções ms do spin. Em decorrência disso e do fato de que para uma partícula com spin = s há 2s + 1 orientações possíveis de spin, o número máximo de ocupação de um férmion com spin 1/2 em um estado é 1 (2 se abstrair o spin) ms = +1/2 e ms = - 1/2.[2]
Exemplos de férmions:
Motivação[editar | editar código-fonte]
As partículas microscópicas exibem propriedades que, no começo do século XX, motivaram o surgimento da Mecânica quântica. O problema da identidade das partículas, antes tido como ponto pacífico pela Mecânica clássica, toma feição inteiramente nova.
Duas partículas que podem ser distinguidas pela posição na mecânica clássica já não o podem ser pela mecânica quântica. Isso decorre pela imprecisão inerente às medidas efetuadas sobre os observáveis, que correspondem, grosso modo, à noção de propriedade da mecânica clássica.
A imprecisão da mecânica quântica decorre do Princípio da incerteza de Heisenberg, que estipula restrição para a medição simultânea de propriedades incompatíveis, que são aquelas que são relacionadas pela relação de incerteza de Heisenberg
Estatística quântica[editar | editar código-fonte]
Com o advento da Mecânica quântica as noções de distinção das partículas subatômicas e da ocupação de estados de energia sofreram sérias reformulações.
No começo do século XX, Boltzmann havia chegado a forma correta da distribuição do número de partículas em função do nível de energia. Mas isso no âmbito da mecânica clássica.
Contudo, principalmente com o surgimento da moderna teoria quântica, o conceito de trajetória se torna seriamente prejudicado, quando não totalmente desnecessário e contraditório.
Uma trajetória implica o deslocamento de uma partícula (idealizada como um ponto matemático) no espaço e no tempo. Nesse sentido, uma trajetória física corresponderia, na matemática, a uma curva suave e diferenciável, completamente contínua em todos os seus pontos.
Porém, mesmo no trabalho de Einstein sobre o movimento browniano em 1905 (publicado juntamente com outros três trabalhos: sobre o efeito fotoelétrico, sobre o calor específico dos sólidos e sobre a relatividade), esse cientista postulou trajetórias em zig-zag, descontínuas em inúmeros (para não dizer infinitos) pontos, para as moléculas e átomos, assim como também as partículas movidas, fossem elas partículas de pó, pólen, dentre outras. Assim, ainda no cenário da física clássica, as trajetórias suaves já eram admissíveis.
Com o entendimento trazido à luz pela interpretação do princípio da incerteza de Heisenberg, e pela interpretação estatística da Função de onda dada por Max Born foi totalmente por terra a noção de que a partícula tinha trajetória definida.
Assim sendo, não se podem distinguir partículas cujas características sejam idênticas se se aproximam muito uma da outra, porque então não se pode identifica-las pela trajetória, já que para pontos muitos próximos, dependendo da velocidade, os pontos já não são discerníveis. A relação matemática que rege essa indeterminação fundamental é a relação da incerteza de Heisenberg:
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- x
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde Xk representa o operador posição, Pl representa o operador Momento linear e o operador identidade.
Dentro desse entendimento, a distribuição de Boltzmann não é mais válida, senão como aproximação. Verificou-se que as distribuições válidas para partículas com carácter manifestamente quântico, são as seguintes:
A primeira é válida para partículas de Spin semi-inteiro( 1/2, 3/2, 5/2...),em unidades de , ou seja, para os férmions, ao passo que a segunda é a distribuição válida para partículas de spin inteiro (0,1,2,3...), ou seja, para os bósons.
Pode-se explicar qualitativa e sucintamente, de forma simplificada, que para os férmions as função de onda , são funções anti-simétricas, ou seja, trocam de sinal perante a troca simultânea das coordenadas espaciais e das coordenadas de spin entre dois férmions.